Ontology reasoning using rules in an eHealth context


Traditionally, nurse call systems in hospitals are rather simple: patients have a button next to their bed to call a nurse. Which specific nurse is called cannot be controlled, as there is no extra information available. This is different for solutions based on semantic knowledge: if the state of care givers (busy or free), their current position, and for example their skills are known, a system can always choose the best suitable nurse for a call. In this paper we describe such a semantic nurse call system implemented using the EYE reasoner and Notation3 rules. The system is able to perform OWL-RL reasoning. Additionally, we use rules to implement complex decision trees. We compare our solution to an implementation using OWL-DL, the Pellet reasoner, and SPARQL queries. We show that our purely rule-based approach gives promising results. Further improvements will lead to a mature product which will significantly change the organization of modern hospitals.